ISO IEC TR 15938-8 Klausa Bibliografi

ISO IEC TR 15938-8 Klausa Bibliografi adalah Standar Internasional mengenai Antarmuka deskripsi konten multimedia  Teknologi informasi, khususnya tentang Ekstraksi dan penggunaan MPEG-7 descriptions.

ISO IEC TR 15938-8 2002 Information technology - Multimedia content description interface - Extraction and use of MPEG-7 descriptions
ISO IEC TR 15938-8 2002 Information technology – Multimedia content description interface – Extraction and use of MPEG-7 descriptions

Daftar Pustaka atau Bibliography

ISO IEC TR 15938-8 Klausa Bibliografi 1-20

  • 1 ISO 8601, Data elements and interchange formats — Information interchange — Representation of dates and times
  • 2 ISO 639 (all parts), Codes for the representation of names of languages
  • 3 ISO 3166-1, Codes for the representation of names of countries and their subdivisions — Part 1: Country codes
  • 4 ISO 3166-2, Codes for the representation of names of countries and their subdivisions — Part 2: Country subdivision code
  • 5 ISO 4217, Codes for the representation of currencies and funds
  • 6 ISO/IEC 11172, Information technology — Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s
  • 7 ISO/IEC 13818 (all parts), Information technology — Generic coding of moving pictures and associated audio information
  • 8 ISO/IEC 14496 (all parts), Information technology?— Coding of audio-visual objects
  • 9 ISO/IEC 15938-1, Information technology — Multimedia content description interface — Part 1: Systems
  • 10 ISO/IEC 15938-2, Information technology — Multimedia content description interface — Part 2: Description definition langauge
  • 11 ISO/IEC 15938-3, Information technology — Multimedia content description interface — Part 3: Visual
  • 12 ISO/IEC 15938-4, Information technology — Multimedia content description interface — Part 4: Audio
  • 13 ISO/IEC 15938-6, Information technology — Multimedia content description interface — Part 6: Reference software
  • 14 ISO/IEC 10646-1, Information technology — Universal Multiple-Octet Coded Character Set (UCS) — Part 1: Architecture and Basic Multilingual Plane
  • 15 ISO/IEC 10646-2, Information technology — Universal Multiple-Octet Coded Character Set (UCS) — Part 2: Supplementary Planes
  • 16 Unicode Consortium, The Unicode standard (http://www.unicode.org/)
  • 17 ISO registry, ISO international character set registry
  • 18 IANA registry (http://www.iana.org/assignments/character-sets)
  • 19 XML, Extensible Markup Language, W3C Recommendation, World Wide Web Consortium (W3C)
  • 20 XML Schema, XML Schema, W3C Recommendation, World Wide Web Consortium (W3C)

21-35

  • 21 xPath, XML Path Language, W3C Recommendation, World Wide Web Consortium (W3C)
  • 22 IETF RFC 2279, UTF-8, a transformation format of ISO 10646
  • 23 IETF RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax
  • 24 IETF RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies
  • 25 IETF RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types
  • 26 IETF RFC 2048, Multipurpose Internet Mail Extensions (MIME) Part Four: Registration Procedures
  • 27 IETF RFC 2045-CHARSETS, Registered Character set codes of RFC2045
  • 28 IETF RFC 2046-MIMETYPES, Registered Mimetypes of??RFC2046
  • 29 Special issue on Object Based Video Coding and Description, IEEE Transactions on Circuits and Systems for Video Technology, 9(8), December 1999
  • 30 L. Agnihotri and N. Dimitrova, Text Detection for Video Analysis, Workshop on Content Based Image and Video Libraries, held in conjunction with CVPR, Colorado, pp. 109-113, 1999
  • 31 Y. Abdeljaoued , T. Ebrahimi, C. Christopoulos, I. Mas Ivars, A new algorithm for shot boundary detection, Proceedings European Signal Processing Conference (EUSIPCO 2000), Special session on Multimedia Indexing, Browsing and Retrieval, 5-8 September 2000, Tampere, Finland
  • 32 M. Bierling, Displacement Estimation by Hierarchical Block Matching, SPIE vol. 1001, Visual Communication & Image Processing, 1988
  • 33 A. D. Bimbo, E. Vicario and D. Zingoni, Symbolic description and visual querying of image sequences using spatio-temporal logic, IEEE Transactions on Knowledge and Data Engineering, vol. 7, no. 4, August, 1995
  • 34 N. Björk and Christopoulos C., Transcoder Architectures for video coding, Proceedings of IEEE International Conference on Acoustic Speech and Signal Processing (ICASSP 98), Seattle, Washington, vol. 5, pp. 2813-2816, May 12-15, 1998
  • 35 S.-K. Chang, Q. Y. Shi, and C. Y. Yan, Iconic indexing by 2-D strings, IEEE Trans. Pattern Analysis Machine Intell., 9(3):413-428, May 1987

ISO IEC TR 15938-8 Klausa Bibliografi 36-45

  • 36 N. Damera-Venkata, et al., Image quality assessment based on a degradation model, IEEE Trans. Image Processing, vol. 9, no. 4, pp. 636-650, 2000
  • 37 G. Freytag, Technique of the Drama, 2nd ed. Translated by Elias J. MacEwan, Chicago: Scott, Foresman, 1898
  • 38 V.N. Gudivada and V.V. Raghavan, Design and Evaluation of Algorithms for Image Retrieval by Spatial Similarity, ACM Transaction on Information Systems, vol. 13, no. 2, April 1995, pp. 115-144
  • 39 A. Hanjalic, H.J. Zhang, An integrated scheme for automated video abstraction based on unsupervised cluster-validity analysis, IEEE Transactions on Circuits and Systems for Video Technology 9(8): 1280-1289, December 1999
  • 40 M. Kass, A. Witkin and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, pp. 321-331, 1988
  • 41 M. Kim, J.G. Choi, D. Kim, H. Lee, M.H. Lee, C. Ahn, Y.S. Ho, A VOP Generation tool: automatic segmentation of moving objects in image sequences based on spatio-temporal information, IEEE Transactions on Circuits and Systems for Video Technology 9(8): 1216-1226, December 1999
  • 42 P. Kuhn, Algorithms, Complexity Analysis and VLSI-Architectures for MPEG-4 Motion Estimation, Kluwer Academic Publishers, 1999, ISBN 792385160
  • 43 P. Kuhn, Camera Motion Estimation using feature points in MPEG compressed domain, IEEE International Conference on Image Processing (ICIP), September 10-13, 2000, Vancouver, Canada
  • 44 S. Herrmann, H. Mooshofer, HY. Dietrich, W. Stechele, A video segmentation algorithm for hierarchical object representation and its implementation, IEEE Transactions on Circuits and Systems for Video Technology 9(8): 1204-1215, December 1999
  • 45 Jain AK, Dubes RC, Algorithms for clustering data. Prentice Hall, Englewood Cliffs, NJ, 1988

ISO IEC TR 15938-8 Klausa Bibliografi 46-55

  • 46 B. Laurel, Computers as Theatre, Addison-Wesley, 1993
  • 47 T. Meier, K. N. Ngan, Video segmentation for content based coding, IEEE Transactions on Circuits and Systems for Video Technology 9(8): 1190-1203, December 1999
  • 48 J. Meng, Y. Juan and S.-F. Chang, Scene Change Detection in a MPEG Compressed Video Sequence, Proceedings, IS&T/SPIE’s Symposium on Electronic Imaging: Science & Techno logy (EI’95) — Digital Video Compression: Algorithms and Technologies, San Jose, February 1995
  • 49 A. Perkis, Y. Abdeljaoued , C. Christopoulos, T. Ebrahimi, J. Chicharo, Universal Multimedia Access from Wired and Wireless Systems, submitted to Circuits, Systems and Signal Processing, Special Issue on Multimedia Communication Services, 2000
  • 50 P. Salembier and F. Marqués, Region-based representation of image and video: Segmentation tools for multimedia services, IEEE Transactions on Circuits and Systems for Video Technology 9(8): 1147-1169, December 1999
  • 51 J-C. Shim, C. Dorai, and R. Bolle, Automatic Text Extraction from Video for Content-Based Annotation and Retrieval, in Proc. of the Int. Conference on Pattern Recognition, pp. 618-620, August 1998
  • 52 J.-C. Shim and C. Dorai, A Fast and Generalized Region Labeling Algorithm, in Proc. of the Int. Conference on Image Processing, October 1999
  • 53 World Wide Web Consortium (W3C), Synchronized Multimedia, http://www.w3.org/AudioVideo/
  • 54 D. Zhong and S.-F. Chang, AMOS: An Active System For MPEG-4 Video Object Segmentation, 1998 International Conference on Image Processing, October 4-7, 1998, Chicago, Illinois, USA
  • 55 D. Zhong and S.-F.Chang, Video Object Model and Segmentation for Content-Based Video Indexing, ISCAS’97, HongKong, June 9-12, 1997

55-65

  • 56 D. Zhong and S.-F.Chang, Spatio-Temporal Video Search Using the Object Based Video Representation, ICIP’97, October 26-29, 1997, Santa Barbara, CA
  • 57 D. Zhong and S.-F. Chang, Region Feature Based Similarity Searching of Semantic Video Objects, ICIP’99, October 24-28, 1999, Kobe, Japan
  • 58 J. F. Allen, Maintaining knowledge about temporal intervals. Communication of ACM, 26(11):832-843, 1983
  • 59 S.-K. Chang, Q. Y. Shi, and C. Y. Yan, Iconic indexing by 2-D strings, IEEE Trans. Pattern Analysis Machine Intell., 9(3):413-428, May 1987
  • 60 Dewey Decimal classification scheme, http://www.oclc.org/dewey/
  • 61 S.C. Shapiro, Encyclopedia of Artificial Intelligence Second Edition, vol. 2, p. 1495, Wiley-Interscience, 1992
  • 62 Yeun-Bae Kim, Masahiro Shibata, A Video Indexing Method using Natural Language Memo for TV Program Production, pp. 266-270, Proceedings of ECAI96, 12th European Conference on Artificial Intelligence, August 1996
  • 63 Y. Takahashi, K. Hasegawa, K. Sugiyama, M. Watanabe, Describing Story Structure of Movies with Semantic Score Method — Toward Human Content Interface Design (3), Bulletin of Japanese Society for Science of Design, vol. 46, no. 6, pp. 57-66, (2000) (in Japanese)
  • 64 Yasushi Takahashi, Yoshiaki Shibata, Mikio Kamada and Hitoshi Kimura, The Semantic Score Method: A Tool for Quantitative Content Evaluation by Multiple Viewers, Proc. of AEI ICMF (International Conference on Media Future), 8-9 May 2001, Florence, Italy, pp. 275-278
  • 65 Y. Takahashi, Semantic Score Method: A Standardized Tool for Quantitative Movie Interpretation — Toward Human Content Interface Design (5), Bulletin of JSSD, vol. 47, no. 4, (2000) (in Japanese)

66-71

  • 66 Y. Takahashi, K. Hasegawa, K. Sugiyama, M. Watanabe, A New Movie Summarization Algorithm for Effective Movie Selection — Toward Human Content Interface Design (4), Bulletin of JSSD, vol. 47, no. 4, (2000) (in Japanese)
  • 67 M. Lounsberry, T. DeRose, J. Warren, Multiresolution analysis for surfaces of arbitrary topological type, TR 93-10-05b, Dept. of CS & Eng., Univ. of Washington, January 1994
  • 68 C.A. Poynton, A technical introduction to Digital Video, John Wiley, 1996 (in particular conversion formulas from RGB to CIE XYZ)
  • 69 A.K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1989 (in particular conversion formulas from CIE XYZ to CIE LUV)
  • 70 R.W.G., The reproduction of Color, 5th ed., Fountain Press, 1995 (fundamentals on color without conversion formulas)
  • 71 M.V. Srinivasan, S. Venkatesh, R. Hosie, Qualitative estimation of camera motion parameters from video sequences, Pattern Recognition, vol. 30, no. 4, pp. 593-606, 1997

Keterangan

1 “The Mask of Zorro”.

© 1998 Global Entertainment Productions GmbH & Co. KG. Courtesy of TriStar Pictures. All Rights Reserved.

2 An image quantized to M colours is composed of M iso-colour planes. The mth plane is the set of all pixels having the mth quantized colour, m∊{0,…, M-1}.

3 An image is defined as a rectangular array of pixels where each pixel is classified into one of two categories: active or passive, and where the active pixels form arbitrarily shaped, possibly disconnected, regions. The dimensions of the image are taken to be the dimensions of the rectangular array.

The values of active pixels, and only those values, participate in the extraction of the descriptor; the values of passive pixels are ignored.

In practice the active and passive pixels of an image are determined by some indirect means such as a binary mask. An image in the usual sense is one in which all pixels in the rectangular array are classified as active.

4 A map, f : A→B, is said to be bijective if f maps set A onto set B in a one-to-one manner.

5 Assumption pixels in the figure are from a central image region, i.e., image borders are at some distance from the edges in the figure.

6 Bin amplitudes the values (h/Rmax)(m), m∊{0,…,M-1}.

7 The ISO/IEC 15938-3 specifies 20 bits of precision, but later experiments revealed that 16 bits are sufficient.

Penutup

Demikian artikel dari standarku.com mengenai Standar ISO IEC TR 15938-8 Klausa Bibliografi.

Mohon saran dari pembaca untuk kelengkapan isi artikel ini, silahkan saran tersebut dapat disampaikan melalui kolom komentar.

Baca artikel lain :

Sumber referensi :

Leave a Comment